Compareads

Comparing huge metagenomic experiments
v2.0

User’s guide - April 2014

Authors: Contact:
Nicolas Maillet pierre.peterlongo@inria.fr
Claire Lemaitre
Rayan Chikhi

Dominique Lavenier
Pierre Peterlongo
Guillaume Collet

Licence
Copyright (C) 2014 INRIA

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero
General Public License as published by the Free Software Foundation, either version 3 of the License, or
any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Publication

Compareads was presented in RECOMB Comparative Genomics in 2012 in Niterdi, Brazil. The publication
can be found in BMC Bioinformatics: http://www.biomedcentral.com/1471-2105/13/S19/S10

Software description

Compareads has been developed to enable the comparison of huge metagenomic datasets (files containing
reads from metagenomic experiments). The efficiency of Compareads is due to a compact data structure:
the Bloom filter (Bloom, 1970). Each read is split in k-mers, which are then stored in a Bloom filter by 4
bits, thus reducing the memory footprint. Moreover, to reduce the disk space used to store the results of a
comparison, Compareads only stores a vector of bits (called bit vector) that represents the selected reads.

To compare two sets of reads, the Compareads approach consists in three steps:

9] Filter the reads given some parameters.
I1) Select reads that are similar in both sets.
I11) Write the similar reads on disk.

These three steps are implemented in three programs called filter_reads, compare_reads and
extract_reads. We also developed a fourth program called bvop, which allows Boolean operations between
bit vectors.



Filter_reads corresponds to the filtering step of Compareads. Each read is filtered on three parameters:
its size, its N content and its Shannon entropy index (see below). Filter_reads produces a bit vector that
represents the selected reads.

Compare_reads corresponds to the comparison step. Given two read sets A and B, reads from A are
indexed in a Bloom filter where reads from B are searched in and vice versa. Thus, compare_reads
produces two bit vectors that represents:

e Reads from A similar to at least one read in B.
e Reads from B similar to at least one read in A.

Extract_reads extracts reads from a given file based on a given bit vector, and writes them in an output
file.

bvop (bit vector operators) allows to combine bit vectors through the following Boolean operators: AND,
OR, NOT, ANDNOT.

This version of Compareads has been refactored and written in C++11. Computation times are equivalent
with the original version of Compareads.

Programs

Filter_reads

Filter_reads takes a file containing reads and filters them on three parameters, their length, their contents
in N (number of unknown bases), and their Shannon entropy index. The output file contains the bit vector
corresponding to selected reads.

Usage:
./filter reads <input file> [options]
Input:

The input file need to be in a well-formed fasta or fatsq format, compressed with gzip or not (errors
often comes from bad formatted files).

Output:

The output file is a bit vector that represents the selected reads in the input file. The size of the bit vector
is the number of reads in the input file. The default output file name is the input file name with .bv
extention. The user may also specify the output file name with —o option.

Options:
e -1 int:minimallength aread should have to be kept.
* -n int:maximal number of Ns a read should contains to be kept.
¢ -—e float:minimal Shannon index a read should have to be kept.
* —c string:the given string will be paste in the header of the output file.
* -0 string:the output file name.
¢ —h: prints this help.
* —v:prints the version number.

Compare_reads

Compare_reads takes two sets of files containing reads and finds the common reads between the two sets.
Two reads are considered similar if they share a given number of identical non-overlapping k-mers. Each
file may be associated to a .bv file (bit vector) that represents the previously filtered reads.

Be careful: The sets of reads given in input are supposed to be filtered by filter_reads. No filter is made in
compare_reads on the size or the complexity of reads.



Usage:

./compare reads —a <file[,bv]> -b <file[,bv]> [options]
Input:

Compare_reads takes two sets (4 and B) of files containing reads.

Input files need to be in a well-formed fasta or fatsq format, compressed with gzip or not (errors often
comes from bad formatted files).

The files of set A are declared with the —a flag. The files of set B are declared with the —b flag.
Input files may have an associated bit vector. A bit vector associated to a file is declared
Output:

For each input file a in 4, a bit vector is written in an output file named a_in_B.bv that corresponds to
reads from a found in B. Similarly, for each input file b in B, a bit vector is written in an output file named
b_in_A.bv that corresponds to reads from b found in A.

Be careful: If two input files have the same basename, one will write on the other because the basename
only is used to generate the output file names. This may happen for files having the same name in different
directories.

Alog file, containing information about the comparison, is also written in file A VS B.txt.

Options:
* -k int:size of k-mers (value of k) [default=33].
* -t int:minimal number of shared non overlapping k-mers [default=2].

* -m int:maximum number of reads to read per file [default=all]
* -1 string: pathto write log file [default=./].

* -0 string: path to write output files [default=./].

¢ —h: prints this help.

* —v:prints the version number.

Extract_reads

Extract_reads takes a file containing reads and its associated bit vector, then it outputs the selected reads
in an output file in the same format than the input file.

Usage:
./extract_reads <input file> <input bv> [options]
Input:

The input file needs to be in a well-formed fasta or fatsq format, compressed with gzip or not (errors
often comes from bad formatted files).

The input_bv is the associated bit vector file. The bit vector size must be exactly the number of reads in
the input file.

Output:

Extract_reads outputs reads, from the input file, that are selected in the bit vector. The default ouput is the
standard output, use —o option to specify an output file.

Options:
* -0 string:name of the output file [default=stdout].
¢ —h: prints this help.
* —v:prints the version number.



Bvop

Bvop is designed to perform Boolean operations between bit vectors. It takes a bit vector file and an
optional operation to perform on a second bit vector file. If no operation specified, it just copies the bit
vector in the output file.

Usage:
./bvop <input file.bv> <output file> [options]
Input:

Input files are bit vector files generated by compare_reads, filter_reads or bvop. A bit vector contains a
header with comments, then a line with a # and the size of the vector (number of reads), finally the vector
of bits (binary format).

Output:

The output file contains the result of the Boolean operation applied to the input file(s).

Options:
¢ -—n:performs NOT on the input file.bv.
e -a <file2.bv>:performs AND between input file.bvand file2.bv.
* -0 <file2.bv>:performs ORbetween input file.bvand file2.bv.
e -d <file2.bv>:performs ANDNOT between input file.bvand file2.bv.
e -x <file2.bv>:performs XOR between input file.bvand file2.bv.

¢ —h: prints this help.
* —v:prints the version number.



